Bertrand’s Paradox and the Principle of Indifference*

نویسنده

  • Nicholas Shackel
چکیده

The principle of indifference is supposed to suffice for the rational assignation of probabilities to possibilities. Bertrand advances a probability problem, now known as his paradox, to which the principle is supposed to apply; yet, just because the problem is ill-posed in a technical sense, applying it leads to a contradiction. Examining an ambiguity in the notion of an ill-posed problem shows that there are precisely two strategies for resolving the paradox: the distinction strategy and the well-posing strategy. The main contenders for resolving the paradox, Marinoff and Jaynes, offer solutions which exemplify these two strategies. I show that Marinoff’s attempt at the distinction strategy fails, and I offer a general refutation of this strategy. The situation for the well-posing strategy is more complex. Careful formulation of the paradox within measure theory shows that one of Bertrand’s original three options can be ruled out but also shows that piecemeal attempts at the well-posing strategy will not succeed. What is required is an appeal to general principle. I show that Jaynes’s use of such a principle, the symmetry requirement, fails to resolve the paradox; that a notion of metaindifference also fails; and that, while the well-posing strategy may not be conclusively refutable, there is no reason to think that it can succeed. So the current situation is this. The failure of Marinoff’s and Jaynes’s solutions means that the paradox remains unresolved, and of the only two strategies for resolution, one is refuted and we have no reason to think the other will succeed. Consequently, Bertrand’s paradox continues to stand in refutation of the principle of indifference.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defusing Bertrand’s Paradox

The classical interpretation of probability together with the Principle of Indifference are formulated in terms of probability measure spaces in which the probability is given by the Haar measure. A notion called Labeling Invariance is defined in the category of Haar probability spaces, it is shown that Labeling Invariance is violated and Bertrand’s Paradox is interpreted as the very proof of v...

متن کامل

Seventh Quadrennial Fellows

The classical interpretation of probability together with the Principle of Indifference are formulated in terms of probability measure spaces in which the probability is given by the Haar measure. A notion called Labeling Irrelevance is defined in the category of Haar probability spaces, it is shown that Labeling Irrelevance is violated and Bertrand’s Paradox is interpreted as the very proof of...

متن کامل

Bertrand’s Paradox Revisited: More Lessons about that Ambiguous Word, Random

The Bertrand paradox question is: “Consider a unit-radius circle for which the length of a side of an inscribed equilateral triangle equals 3 . Determine the probability that the length of a ‘random’ chord of a unit-radius circle has length greater than 3 .” Bertrand derived three different ‘correct’ answers, the correctness depending on interpretation of the word, random. Here we employ geomet...

متن کامل

An Extended Problem to Bertrand’s Paradox

Bertrand’s paradox is a longstanding problem within the classical interpretation of probability theory. The solutions 1/2, 1/3, and 1/4 were proposed using three different approaches to model the problem. In this article, an extended problem, of which Bertrand’s paradox is a special case, is proposed and solved. For the special case, it is shown that the corresponding solution is 1/3. Moreover,...

متن کامل

Elements of dialectical contextualism

In what follows, I strive to present the elements of a philosophical doctrine, which can be defined as dialectical contextualism. I proceed first to define the elements of this doctrine: dualities and polar contraries, the principle of dialectical indifference and the one-sidedness bias. I emphasize then the special importance of this doctrine in one specific field of meta-philosophy: the metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007